
micropy-cli
Release 4.2.2

Braden Mars

Jan 12, 2024

DOCUMENTATION

1 Installation 3
1.1 Installation . 3
1.2 Getting Started . 3
1.3 See Also . 6
1.4 Acknowledgements . 6
1.5 CLI Usage . 6
1.6 API Reference . 6

2 Indices and tables 13

Python Module Index 15

Index 17

i

ii

micropy-cli, Release 4.2.2

Micropy Cli is a project management/generation tool for writing Micropython code in modern IDEs such as VSCode.
Its primary goal is to automate the process of creating a workspace complete with:

• Linting compatible with Micropython

• VSCode Intellisense

• Autocompletion

• Dependency Management

• VCS Compatibility

DOCUMENTATION 1

https://micropython.org/

micropy-cli, Release 4.2.2

2 DOCUMENTATION

CHAPTER

ONE

INSTALLATION

You can download and install the latest version of this software from the Python package index (PyPI) as follows:

pip install --upgrade micropy-cli

1.1 Installation

You can download and install the latest version of this software from the Python package index (PyPI) as follows:

pip install --upgrade micropy-cli

If applicable, you can test out a pre-release by executing:

pip install --upgrade --pre micropy-cli

1.2 Getting Started

1.2.1 Creating a Project

Creating a new project folder is as simple as:

1. Executing micropy init <PROJECT NAME>

2. Selecting which features to enable

3. Selecting your target device/firmware

4. Boom. Your workspace is ready.

1.2.2 Micropy Project Environment

When creating a project with micropy-cli, two special items are added:

• A .micropy/ folder

• A micropy.json file

The .micropy/ contains symlinks from your project to your $HOME/.micropy/stubs folder. By doing this, micropy
can reference the required stub files for your project as relative to it, rather than using absolute paths to $HOME/.
micropy. How does this benefit you? Thanks to this feature, you can feel free to push common setting files such as
settings.json and .pylint.rc to your remote git repository. This way, others who clone your repo can achieve a
matching workspace in their local environment.

3

micropy-cli, Release 4.2.2

Note: The generated .micropy/ folder should be IGNORED by your VCS. It is created locally for each
environment via the micropy.json file.

The micropy.json file contains information micropy needs in order to resolve your projects required files when other
clone your repo. Think of it as a package.json for micropython.

1.2.3 Cloning a Micropy Environment

To setup a Micropy environment locally, simply:

• Install micropy-cli

• Navigate to the project directory

• Execute micropy

Micropy will automatically configure and install any stubs required by a project thanks to its micropy.json file.

1.2.4 Project Dependencies

While all modules that are included in your targeted micropython firmware are available with autocompletion, intel-
lisense, and linting, most projects require external dependencies.

Currently, handling dependencies with micropython is a bit tricky. Maybe you can install a cpython version of your
requirement? Maybe you could just copy and paste it? What if it needs to be frozen?

Micropy handles all these issues for you automatically. Not only does it track your project’s dependencies, it keeps
both requirements.txt and dev-requirements.txt updated, enables autocompletion/intellisense for each dep,
and allows you to import them just as you would on your device.

This allows you to include your requirement however you want, whether that be as a frozen module in your custom
built firmware, or simply in the /lib folder on your device.

Installing Packages

To add a package as a requirement for your project, run:

micropy install <PACKAGE_NAMES>

while in your project’s root directory.

This will automatically execute the following:

• Source PACKAGE_NAMES from pypi, as a url, or a local path

• Retrieve the module/package and stub it, adding it to your local .micropy folder.

• Add requirement to your micropy.json

• Update requirements.txt

To install dev packages that are not needed on your device, but are needed for local development, add the --dev flag.
This will do everything above except stub the requirement.

You can also install all requirements found in micropy.json/requirements.txt/dev-requirements.txt by ex-
ecuting micropy install without passing any packages. Micropy will automatically do this when setting up a local
environment of an existing micropy project.

4 Chapter 1. Installation

micropy-cli, Release 4.2.2

Example

Lets say your new project will depend on picoweb and blynklib. Plus, you’d like to use rshell to communicate directly
with your device. After creating your project via micropy init, you can install your requirements as so:

Now you or anybody cloning your project can import those requirements normally, and have the benefits of all the
features micropy brings:

1.2.5 Stub Management

Stub files are the magic behind how micropy allows features such as linting, Intellisense, and autocompletion to work.
To achieve the best results with MicropyCli, its important that you first add the appropriate stubs for the device/firmware
your project uses.

Note: When working in a micropy project, all stub related commands will also be executed on the active
project. (i.e if in a project and you run micropy stubs add <stub-name>, then that stub retrieved AND
added to the active project.)

Adding Stubs

Adding stubs to Micropy is a breeze. Simply run: micropy stubs add <STUB_NAME> By sourcing micropy-stubs,
MicroPy has several premade stub packages to choose from.

These packages generally use the following naming schema:

<device>-<firmware>-<version>

For example, running micropy stubs add esp32-micropython-1.11.0 will install the following:

• Micropython Specific Stubs

• ESP32 Micropython v1.11 Device Specific Stubs

• Frozen Modules for both device and firmware

You can search stubs that are made available to Micropy via micropy stubs search <QUERY>

Alternatively, using micropy stubs add <PATH>, you can manually add stubs to Micropy. For manual stub genera-
tion, please see Josvel/micropython-stubber.

Creating Stubs

Using micropy stubs create <PORT/IP_ADDRESS>, MicropyCli can automatically generate and add stubs from
any Micropython device you have on hand. This can be done over both USB and WiFi.

Note: For stub creation, micropy-cli has additional dependencies.

These can be installed by executing: pip install micropy-cli[create_stubs]

1.2. Getting Started 5

https://pypi.org/project/picoweb/
https://pypi.org/project/blynklib/
https://pypi.org/project/rshell/
https://github.com/BradenM/micropy-stubs
https://github.com/Josverl/micropython-stubber

micropy-cli, Release 4.2.2

Viewing Stubs

To list stubs you have installed, simply run micropy stubs list.

To search for stubs for your device, use micropy stubs search <QUERY>.

1.3 See Also

• VSCode IntelliSense, Autocompletion & Linting capabilities

– An awesome article written by lemariva. It covers creating a micropython project environment from scratch
using micropy-cli and pymakr-vsc. Great place to start if you’re new to this!

1.4 Acknowledgements

1.4.1 Micropython-Stubber

Josvel/micropython-stubber

Josverl’s Repo is full of information regarding Micropython compatibility with VSCode and more. To find out more
about how this process works, take a look at it.

micropy-cli and micropy-stubs depend on micropython-stubber for its ability to generate frozen modules, create stubs
on a pyboard, and more.

1.5 CLI Usage

1.6 API Reference

micropy Micropy Cli.
micropy.main Main Module.
micropy.exceptions Micropy Exceptions.
micropy.stubs micropy.stubs
micropy.stubs.source micropy.stubs.source

:2: (WARNING/2) Title underline too short.
micropy.stubs.source ~~~~~~~~~~~~~~

micropy.project Module for generating/managing projects.
micropy.project.modules Project Modules.
micropy.utils micropy.utils
micropy.config Configuration files and interfaces for them.
micropy.config.config_source Config Abstract.
micropy.packages Packages Module.

6 Chapter 1. Installation

https://lemariva.com/blog/2019/08/micropython-vsc-ide-intellisense
https://github.com/lemariva
pymakr-vsc
https://github.com/Josverl/micropython-stubber
https://github.com/BradenM/micropy-stubs

micropy-cli, Release 4.2.2

1.6.1 micropy

Micropy Cli.

Micropy Cli is a project management/generation tool for writing Micropython code in modern IDEs such as VSCode.
Its primary goal is to automate the process of creating a workspace complete with:

Linting compatible with Micropython, VSCode Intellisense, Autocompletion, Dependency Management, VCS Com-
patibility and more.

Classes

MicroPy(*[, options]) Handles App State Management.

1.6.2 micropy.main

Main Module.

Functions

parse_file_as(type_, path, *[, ...])
rtype

TypeVar(T)

Classes

Log() Borg for easy access to any Log from anywhere in the
package.

MicroPy(*[, options]) Handles App State Management.
MicroPyOptions(*[, root_dir, stubs_dir])

Path(*args, **kwargs) PurePath subclass that can make system calls.
Project(path[, name]) Micropy Project.
RepositoryInfo(**data)

StubManager([resource, repos]) Manages a collection of Stubs.
StubRepository([manifests, packages_index, ...])

1.6. API Reference 7

micropy-cli, Release 4.2.2

1.6.3 micropy.exceptions

Micropy Exceptions.

Exceptions

MicropyException Generic MicroPy Exception.
PyDeviceConnectionError(location)

PyDeviceError([message]) Generic PyDevice exception.
PyDeviceFileIntegrityError(device_path, ...)

RequirementException(*args, **kwargs) A Requirement Exception Occurred.
RequirementNotFound(*args, **kwargs) A requirement could not be found.
StubError([message, stub]) Exception for any errors raised by stubs.
StubNotFound([stub_name]) Raised when a stub cannot be found.
StubValidationError(path, errors, *args, ...) Raised when a stub fails validation.

1.6.4 micropy.stubs

micropy.stubs

This module contains all functionality relating to stub files/frozen modules and their usage in MicropyCli

Classes

MicropyStubPackage(**data)

MicropythonStubsManifest(**data)

MicropythonStubsPackage(**data)

RepositoryInfo(**data)

StubManager([resource, repos]) Manages a collection of Stubs.
StubPackage(**data)

StubRepository([manifests, packages_index, ...])

StubRepositoryPackage(manifest, package)

StubsManifest(**data)

8 Chapter 1. Installation

micropy-cli, Release 4.2.2

1.6.5 micropy.stubs.source

micropy.stubs.source

This module contains abstractions for handling stub sources and their location.

Functions

cast(typ, val) Cast a value to a type.
contextmanager(func) @contextmanager decorator.
get_source(location, **kwargs) Factory for StubSource Instance.
reduce(function, iterable[, initial]) Apply a function of two arguments cumulatively to the

items of a sequence or iterable, from left to right, so as
to reduce the iterable to a single value.

Classes

Any(*args, **kwargs) Special type indicating an unconstrained type.
ExitStack() Context manager for dynamic management of a stack of

exit callbacks.
LocateStrategy(*args, **kwargs)

Log() Borg for easy access to any Log from anywhere in the
package.

Path(*args, **kwargs) PurePath subclass that can make system calls.
Protocol() Base class for protocol classes.
RemoteStubLocator() Stub Source for remote locations.
RepoStubLocator(repo)

StubInfoSpecLocator()

StubSource([locators, location]) Handles sourcing stubs.
partial partial(func, *args, **keywords) - new function with

partial application of the given arguments and keywords.

1.6.6 micropy.project

Module for generating/managing projects.

1.6. API Reference 9

micropy-cli, Release 4.2.2

Classes

Project(path[, name]) Micropy Project.

1.6.7 micropy.project.modules

Project Modules.

Classes

DevPackagesModule(path, **kwargs) Project Module for Dev Packages.
HookProxy(name) Proxy for Project Hooks.
PackagesModule(path, **kwargs) Project Module for handling requirements.
ProjectModule([parent, log]) Abstract Base Class for Project Modules.
StubsModule(stub_manager[, stubs]) Project module for handling Stubs.
TemplatesModule([templates, run_checks]) Project Templates Module.

1.6.8 micropy.utils

micropy.utils

This module provides utility functions that are used within MicropyCli.

Functions

create_dir_link(source, target) Creates a platform appropriate directory link.
ensure_existing_dir(path) Ensure path exists and is a directory.
ensure_valid_url(url) Ensure a url is valid.
extract_tarbytes(file_bytes, path) Extract tarfile as bytes.
generate_stub(path[, log_func]) Create Stub from local .py file.
get_cached_data(url) Wrap requests with a short cache.
get_class_that_defined_method(meth) Determines Class that defined a given method.
get_package_meta(name, url) Retrieve package metadata from PyPi.
get_url_filename(url) Parse filename from url.
is_dir_link(path) Test if path is either a symlink or directory junction.
is_downloadable(url) Checks if the url can be downloaded from.
is_existing_dir(path) Check if path is an existing directory.
is_update_available() Check if micropy-cli update is available.
is_url(url) Check if provided string is a url.
iter_requirements(path) Iterate requirements from a requirements.txt file.
lazy_property(fn)

search_xml(url, node) Search xml from url by node.
stream_download(url, **kwargs) Stream download with tqdm progress bar.

10 Chapter 1. Installation

micropy-cli, Release 4.2.2

Classes

Validator(schema_path) "jsonschema wrapper for file validation.

1.6.9 micropy.config

Configuration files and interfaces for them.

Classes

Config(*args[, source_format, default]) Configuration File Interface.
DictConfigSource([config])

JSONConfigSource(path) JSON Config File Source.

1.6.10 micropy.config.config_source

Config Abstract.

Classes

Any(*args, **kwargs) Special type indicating an unconstrained type.
ConfigSource([initial_config]) Abstract Base Class for Config Sources.
Log() Borg for easy access to any Log from anywhere in the

package.
ServiceLog([service_name, base_color]) Handles logging to stdout and micropy.log.

1.6.11 micropy.packages

Packages Module.

Allows user to address different dependency types (package, module, path, pypi, etc.) through a single uniform api.

Functions

create_dependency_source(requirement[, name]) Factory for creating a dependency source object.

1.6. API Reference 11

micropy-cli, Release 4.2.2

Classes

Any(*args, **kwargs) Special type indicating an unconstrained type.
LocalDependencySource(package, path) Dependency Source that is available locally.
Package(name, specs[, path, uri, vcs, ...])

PackageDependencySource(package[, format_desc]) Dependency Source for pypi packages.
Path(*args, **kwargs) PurePath subclass that can make system calls.
VCSDependencySource(package[, format_desc]) Dependency Source for vcs packages.

12 Chapter 1. Installation

CHAPTER

TWO

INDICES AND TABLES

• genindex

• modindex

• search

13

micropy-cli, Release 4.2.2

14 Chapter 2. Indices and tables

PYTHON MODULE INDEX

m
micropy, 7
micropy.config, 11
micropy.config.config_source, 11
micropy.exceptions, 8
micropy.main, 7
micropy.packages, 11
micropy.project, 9
micropy.project.modules, 10
micropy.stubs, 8
micropy.stubs.source, 9
micropy.utils, 10

15

micropy-cli, Release 4.2.2

16 Python Module Index

INDEX

M
micropy

module, 7
micropy.config
module, 11

micropy.config.config_source
module, 11

micropy.exceptions
module, 8

micropy.main
module, 7

micropy.packages
module, 11

micropy.project
module, 9

micropy.project.modules
module, 10

micropy.stubs
module, 8

micropy.stubs.source
module, 9

micropy.utils
module, 10

module
micropy, 7
micropy.config, 11
micropy.config.config_source, 11
micropy.exceptions, 8
micropy.main, 7
micropy.packages, 11
micropy.project, 9
micropy.project.modules, 10
micropy.stubs, 8
micropy.stubs.source, 9
micropy.utils, 10

17

	Installation
	Installation
	Getting Started
	Creating a Project
	Micropy Project Environment
	Cloning a Micropy Environment
	Project Dependencies
	Installing Packages
	Example

	Stub Management
	Adding Stubs
	Creating Stubs
	Viewing Stubs

	See Also
	Acknowledgements
	Micropython-Stubber

	CLI Usage
	API Reference
	micropy
	micropy.main
	micropy.exceptions
	micropy.stubs
	micropy.stubs

	micropy.stubs.source
	micropy.stubs.source

	micropy.project
	micropy.project.modules
	micropy.utils
	micropy.utils

	micropy.config
	micropy.config.config_source
	micropy.packages

	Indices and tables
	Python Module Index
	Index

